Gossip-Based Machine Learning in Fully Distributed Environments
نویسنده
چکیده
منابع مشابه
DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملGADGET SVM: a Gossip-bAseD sub-GradiEnT SVM solver
Distributed environments such as federated databases, wireless and sensor networks, Peer-to-Peer (P2P) networks are becoming increasingly popular and wellsuited for machine learning since they can store large quantities of data on a network. The distributed setting is complex in part because network topologies are often dynamic and data available to algorithms changes frequently. Furthermore, i...
متن کاملGossip learning with linear models on fully distributed data
Machine learning over fully distributed data poses an important problem in peer-to-peer (P2P) applications. In this model we have one data record at each network node, but without the possibility to move raw data due to privacy considerations. For example, user profiles, ratings, history, or sensor readings can represent this case. This problem is difficult, because there is no possibility to l...
متن کاملEfficient P2P Ensemble Learning with Linear Models on Fully Distributed Data
Machine learning over fully distributed data poses an important problem in peer-to-peer (P2P) applications. In this model we have one data record at each network node, but without the possibility to move raw data due to privacy considerations. For example, user profiles, ratings, history, or sensor readings can represent this case. This problem is difficult, because there is no possibility to l...
متن کامل